Automated crater shape retrieval using weakly-supervised deep learning
نویسندگان
چکیده
منابع مشابه
Weakly Supervised Localization Using Deep Feature Maps
Object localization is an important computer vision problem with a variety of applications. The lack of large scale object-level annotations and the relative abundance of image-level labels makes a compelling case for weak supervision in the object localization task. Deep Convolutional Neural Networks are a class of state-of-the-art methods for the related problem of object recognition. In this...
متن کاملAn Approach for Weakly-Supervised Deep Information Retrieval
Recent developments in neural information retrieval models have been promising, but a problem remains: human relevance judgments are expensive to produce, while neural models require a considerable amount of training data. In an aempt to ll this gap, we present an approach that—given a weak training set of pseudo-queries, documents, relevance information—lters the data to produce eective po...
متن کاملDeep patch learning for weakly supervised object classification and discovery
Patch-level image representation is very important for object classification and detection, since it is robust to spatial transformation, scale variation, and cluttered background. Many existing methods usually require fine-grained supervisions (e.g., bounding-box annotations) to learn patch features, which requires a great effort to label images may limit their potential applications. In this ...
متن کاملDeep Residual Learning for Weakly-Supervised Relation Extraction
Deep residual learning (ResNet) (He et al., 2016) is a new method for training very deep neural networks using identity mapping for shortcut connections. ResNet has won the ImageNet ILSVRC 2015 classification task, and achieved state-of-theart performances in many computer vision tasks. However, the effect of residual learning on noisy natural language processing tasks is still not well underst...
متن کاملSelf Paced Deep Learning for Weakly Supervised Object Detection
In a weakly-supervised scenario, object detectors need to be trained using image-level annotation only. Since bounding-box-level ground truth is not available, mostof the solutions proposed so far are based on an iterative approach in which theclassifier, obtained in the previous iteration, is used to predict the objects’ positionswhich are used for training in the current itera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Icarus
سال: 2020
ISSN: 0019-1035
DOI: 10.1016/j.icarus.2020.113749